3/4x^2-5=16

Simple and best practice solution for 3/4x^2-5=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x^2-5=16 equation:



3/4x^2-5=16
We move all terms to the left:
3/4x^2-5-(16)=0
Domain of the equation: 4x^2!=0
x^2!=0/4
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x^2-21=0
We multiply all the terms by the denominator
-21*4x^2+3=0
Wy multiply elements
-84x^2+3=0
a = -84; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-84)·3
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*-84}=\frac{0-12\sqrt{7}}{-168} =-\frac{12\sqrt{7}}{-168} =-\frac{\sqrt{7}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*-84}=\frac{0+12\sqrt{7}}{-168} =\frac{12\sqrt{7}}{-168} =\frac{\sqrt{7}}{-14} $

See similar equations:

| -6p+7=3(2p-3)-4(-410+4p) | | 0.3(4x+x)=4.5 | | k+9/12=-2 | | v-10=2v | | -2+3(5x-5)=22+2x | | 75=-5(-3-4x( | | 8x+3-5x+7=-6 | | 7/2x+1/2x=22=9/2x | | 7/2x+1.2x=22=9/2x | | (11/4)x=2 | | -8-3(2x-2)=4x+4(8+6x) | | YxYxY=8 | | -7x+9=2x+8 | | 2^(x+2)-4*5^(x+2)=25*5^x-4*2^x | | 7=10x+5 | | -7x+9=-3x-10 | | -2(4x-6)=-6x+10 | | -5a-6(4a+5)=-7a+36 | | -11x-5-9x+1=-8 | | 1x-5+8x-4=-8 | | 4(y-9)=7y-39 | | 0=3t-5-t+2-3+2t | | 4(6-2x)-2x=3-3x | | 2+3h=-8+2h | | -2x(x-6)=2x+44 | | -3v-17=-8(v+4) | | 10x+30=8x-3+2x+27 | | 1.3(8-b)=+3.7b=-5.2 | | 2/3x=1/5x=7 | | 3+6j=5j | | -4j=-7j-6 | | -5q+10=5q |

Equations solver categories